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LETTER TO THE EDITOR 

One-dimensional equations with the maximum number of 
symmetry generators 

L G S Duarte, S E S Duarte and I C Moreira 
Departamento de Fisica Tebrica, Instituto de Fisica, Universidade Federal do Rio de 
Janeiro, Ilha do Fundio-21941, Rio de Janeiro, Brazil 

Received 17 March 1987 

Abstract. In this letter we employ a general space and time transformation to find a class 
of second-order differential equations with the maximum number (eight) of Lie symmetry 
generators. We apply this transformation to obtain the symmetry generators for the 
harmonic oscillator and for a non-linear equation, introduced by Leach, starting from the 
symmetry generators of the free-particle equation. 

Recently there has been increasing interest in studying the symmetries of differential 
equations modelling physical systems. The method introduced by Lie ( 1891) considers 
the invariance of the form of the differential equation itself under point transformations 
of one parameter. It has been applied, in recent years, to several equations of motion 
for dynamical systems: the harmonic oscillator (Wulfman and Wybourne 1976), the 
time-dependent oscillator (Prince and Eliezer 1980), the Kepler problem (Prince and 
Eliezer 1981), the particle in a constant magnetic field (Moreira 1983), the charge- 
monopole interaction (Moreira et al 1985), etc. 

Lie himself showed that for the one-dimensional free particle there are eight point 
transformations of one parameter that maintain the invariance of the equation; the 
same situation occurs for a time-dependent oscillator. This is the maximum number 
of generators for a second-order differential equation of the form 

X+f(x,x, r ) = O .  (1) 

In a recent paper Leach (1985) has obtained an ‘unexpected result’: the non-linear 
equation 

x + 2 x i  +;X3 = 0 (2) 

also has eight symmetry generators. In this letter we obtain a general class of one- 
dimensional equations with the same property: all of them have the maximum number 
of symmetry generators for a second-order differential equation. We generate this class 
starting from the idea that this kind of equation can be transformed, by a point 
transformation, to the free-particle equation. We also show that this transformation 
permits us to obtain directly the symmetry generators for this class of equations by 
using the symmetry generators of the free particle. In particular, we apply this procedure 
for the harmonic oscillator and equation (2). 

We start from the free-particle equation 

d2X/dT2 = 0. (3)  
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If we make an invertible point transformation 

X = F(x ,  t )  x = P ( X ,  T )  

T = G ( x ,  t )  t = Q ( X ,  T )  

with A= GrFx - GxFr # 0, then equation ( 3 )  will have the form 

X+A,(x, t )X3+AZ(x,  t )X2+A,(x ,  t )X+Ao(x,  t ) = O  

where 

A3= (GxFxx- FxGxx)IA 

AZ = ( G P x x  + 2 GxFrx - 2 FxG1.x - Fr G x x  )I A 

A I  = ( GxFtr + 2GrFr.x - 2FrGt.x - FxGrr )I A 

no= (GrFr, - FrGtt)/A. 

The eight symmetry generators for equation ( 3 )  are 

U ,  = a/aT U, = a/ax U, = T a/aT U, = X alax 
U, = x a/aT U,= T alax U,= T 2 a / a T +  T x  alax ( 7 )  

u, = x2 alax + TX a/aT 

By using the transformation (4) we obtain, from equation (7), the symmetry generators 
for equation (5): 

U1 = Q,(x, t ) a / a t  + P,(x, t)d/dx 

U,  = GQTa/at + GP,a/ax 

U, = FQTa/af + FP,a/ax U,= GQxa/at+GPxa/ax (8) 

U, = Qxa/at+ Pxalax 

U, = FQxa/at + FPxa/ax 

U,=(G2QT+ GFQx)a/at+(G2P,+GFPx)a/ax 
U,= (GFP,+F2Px)alax+(GFQT+ F2Qx)a/at.  

We now analyse particular cases of equation (5). If we let A, = 0, equation ( 6 )  yields 

G = f , ( t ) F ( x ,  t ) + & ( t ) .  (9) 

(i) F = a ( t ) x + b ( t )  G =  C ( a x + b ) + g , ( t )  (10) 

Also letting A 2 = 0 ,  we find that two types of solution for F and G are 

1 g1 G=--- fl glfi 

px+q fl +gl 
(ii) F = 

P w X + q ( K x  
where C is a constant. 

By using equation ( 6 )  we obtain, for these two solutions, 

2dg1 - agl x (  ugl - d g , )  + ( g g ,  - dg,) (i)  A I  = Ao= 
@ I  ag, 

(ii) A I  = 2f1(px + 2pq - p q )  +f, + hf l (  px + q )  

h 2  ( h i - f i  - hfi)  3 h  f l  (px  + q )  
( P X  + 4 ), - - (px + 4 )  ( px + q ) - 7 (px + q ) + - 

P Pfl  P Pf l  P 
Ao=-  ( PX + 4), - 
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where h = (gd, -g,f ,) /U,)*.  
Consider first the case of the time-dependent oscillator 

x+ wZ( t)x = 0. (14) 

From equations ( 5 )  and (12) we find, with a(  t )  = p - ' (  t ) ,  

F = p - ' ( t ) x +  C1 p - 2  dt  + C,  I 
G = Cp-'( t)x + C3 

where p ( t )  satisfies 

For the time-independent harmonic oscillator, w 2 (  t )  = w ; ,  equation (16) has the 
solution p = e-'"O' and the transformations (15) become 

F = x e'"O'+ C1 eziwo'/2iw0+ C,  

G = Cx e'"o'+ C3 e2i"o'/2iwo+ C,.  

The inverse transformations will be 

P = ~ ( 2 i w ~ t ) - " ~  Q = ln(2iwoT)/2ioo (18) 

We obtain directly from equations (8), (17) and (18) the symmetry generators for 

In the form p = A cos ut, equation (15 )  becomes 

(with C ,  = C2 = C = C, = 0, C3 = 1). 

the harmonic oscillator (see, for example, Wulfman and Wybourne (1976)). 

F = x sec(w,t)+ C ,  tan(wot)/wo+ Cz 

G = Cx sec( w o t )  + C3 tan( wet)/ wo + C,. 

This transformation, when C ,  = C,  = C, = 0 and C3 = 1,  is called the Jackiw transforma- 
tion (Jackiw 1980). It reduces the harmonic oscillator equation to the free-particle 
equation. The generalisation of this kind of transformation for the case of a time- 
dependent oscillator with a linear friction A I (  t ) x  is straightforward. All the infinitesimal 
symmetry groups for the linear systems considered by Aguirre and Krause (1984) can 
be found by this method. For example, the symmetry generators for the free-falling 
particle, x + g = 0, can be found directly from equation (8) by using the transformation 

F = x + i g t 2  G = t. 

These point transformations can also be used to obtain the quantum propagator 
for the time-dependent oscillator (or for more general systems) starting from the 
free-particle propagator (Junker and Inomata 1985). 

From (13 )  we can show easily that the equation 

x + f i x  + ; ~ 2 ~ 3  = 0 (20) 

F = t / x  -iKt2 G =  l /x - iKt .  (21) 

is transformed in the free-particle equation if we let 
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Putting K = 2 we obtain equation (2) introduced by Leach (1985). (The referee 
has observed that equation (20) can be generalised under the transformation x + ax, 
r + P T . )  

The following symmetry generators for (20) are obtained from (8):  

x, = -xt  a/at+(-x2+fKx3t)a/ax 

x 3 =  t ( f K x r - l ) a / a r - x ( l + ~ K 2 x 2 t 2 - ~ K x f )  alax 
x, = r(  1 - i K x t )  a l a r  + K x 2 t ( & K x t  - f )  alax 

x5 = r 2 ( i f i t  - 1 )  a l a r  + x r ( t f i t  - 1 - & K 2 x 2 t 2 )  a/ax 

x , =  ( 1  - f ~ x t )  a l a r  + ~ K x ~ ( ~ K x ~  - 1 )  alax 

X,=iKt2(1 - i f i t )  a/at+($Kxt - 1 - ~ K 2 ~ 2 t 2 + $ K 3 ~ 3 r 3 )  a/ax 

~ , = ~ ~ r ~ ( i - ~ ~ x t ) a / a t + t ( f ~ x t - 1  - i K 2 ~ 2 f 2 + & K 3 ~ 3 t 3 )  alax. 

x2 = x a l a r  --fKx3 alax 

We also note that the solution X = AT+ B for equation ( 3 )  permits us to find solutions 
for the transformed equation (5 ) .  For example, by using equation (21) and its inverted 
transformation, we obtain the following solution for equation (20): 

x = ( t  - A) / ( iK t2  -fAKt+3) 

where A and B are constants. 
This same solution was found by Leach (1985), for the case K = 2, by direct 

integration. 
The transformation technique employed here to find a class of one-dimensional 

equations with the maximum number of symmetry generators can be generalised to 
multidimensional equations. This procedure can be useful to obtain directly the Lie 
symmetry group of the equations and to construct the quantum propagator starting 
from the results for the free particle. 

We express our appreciation to L P Bueno, 0 M Ritter, F C Santos and A Tort for 
stimulating discussions and to P G L Leach for supplying a preprint of his 1985 paper. 
We would like to thank the referee for some useful suggestions. 
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